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Abstract. We studied a random heteropolymer chain with a Gaussian distribution of types
of monomers. Long-range correlations between types of monomers were introduced. The
mean-field analysis of such a heteropolymer indicates the existence of an infinite energy barrier
between the heteropolymer random coil and the frozen states. Thus, the frozen state is kinetically
unavailable for the random heteropolymer with power-law correlations in the sequence of the
monomer. The relationship between our results and some obtained earlier for the DNA intrones
sequences are discussed.

1. Introduction

The relationship between the sequence and conformation of a protein macromolecule is
one of the great unsolved problems in biophysics. At the present time it is widely
believed that functional proteins usually form a single compact three-dimensional structure
that corresponds to the global energetic minimum in conformational space. Recently this
question has been addressed by the study of random heteropolymers and comparing them
with proteins. The fact that even chains with random sequences can have a unique ground
state characterized by the frozen path of the polymer-chain backbone was first examined in
terms of the random energy model (REM) [1, 2]. Subsequent investigations were carried
out on the basis of ‘microscopic’ Hamiltonians in which the interactions between pairs of
monomers were assumed to be random, independently taken from a Gaussian distribution
[3], or with polymer sequences explicitly present [4–6]. All these models were shown to
exhibit a freezing-phase transition for the random chain.

Recently, Shakhnovich and Gutin [7] found that to have such a minimum it is sufficient
that an amino acid sequence forms an uncorrelated random sequence. These results give
rise to the question: Is the lack of long-range correlations in protein sequences anecessary
condition for a three-dimensional biologically functional structure formation? Here we give
some positive answers to this question.

From this point of view it is very interesting that recently some results regarding
long-range (scale-invariant) correlations in non-coding DNA sequences were obtained [8].
For example it was reported that only non-coding DNA sequences exhibit long-range
correlations. This finding, had some support [9, 10]; however, other authors [11, 12]
disagreed. For example Voss [10] recently proposed that coding as well as non-coding
DNA sequences display long-range power-law correlations in their base-pair sequences.

In this paper, using the above-mentioned problem, we will examine the heteropolymer
with the quenched random sequence described by the set of random variablesσk

0305-4470/97/227765+09$19.50c© 1997 IOP Publishing Ltd 7765



7766 E Sh Mamasakhlisov et al

characteristic of each monomer. In the past [4–6] the monomer species were considered as
independent random variables or, as in [13], were examined using short-range correlations
(with exponential decay) between types of monomers. Here we investigate the folding
problem for the random heteropolymer with the quenched sequence monomer in the presence
of long-range (power-law) correlations.

2. Model and mean-field theory

Let us discuss the heteropolymer chain with a frozen sequence of monomers using a
Hamiltonian function of the monomer coordinates{ri}. Our model Hamiltonian can be
written

H = T

a2

∑
i

(ri − ri+1)
2+

∑
i<j

Bij δ(ri − rj )+ C
∑
i<j<k

δ(ri − rj )δ(rj − rk) (2.1)

whereBij = B0 + Bσiσj andC are virial coefficients describing two- and three-particle
interactions,σk is a variable of the species ofkth monomer,a is the statistical segment
length andT is the temperature. We work in units wherekB = 1.

Earlier reports [1–6] discussed this problem usingσk statistically independent variables.
Here we are usingσk as random variables with long-range correlations, characterized by
the Gaussian distribution function in the form:

P {σ } ∝ exp[− 1
2(σ, K̂

−1σ)]

σ = (σ1, . . . , σN)
(2.2)

whereK̂ = ‖Kij‖ is the matrix describing correlations in the chain sequence:

Kij = 〈σiσj 〉P . (2.3)

There are several reasons for the existence, in non-coding regions of DNA (intrones) only,
of scale-invariant long-range correlations in DNA sequences (see, e.g. [14]). The correlation
function of the monomer species in this case has the form [14]:

K(l) ∝ lβ−1 (2.4)

where 0< β < 1 andl = |i − j |.
Now we are going to find the free energyF . The standard way to derive the partition

function of a system with quenched disorder is to use the replica device:

F = 〈F(σ)〉P = −T lim
n→0

∂

∂n
〈Z(σ)n〉P (2.5)

where〈〉P means the average over all possible realizations ofσ. In these terms the averaged
value of the partition function will come to:

〈Zn〉P =
∫

Drαi g(r
α
i+1− rαi ) exp

(
− C

∑
α

∑
ijk

δ(rαi − rαj )δ(rαi − rαk )
)

× exp

(
− B0

∑
α

∑
ij

δ(rαi − rαj )
)〈

exp

(
− B

∑
ij

σiσj
∑
α

δ(rαi − rαj )
)〉

P

(2.6)

whereα are replica indices,rai describes the position of theith monomer of replicaα in
three-dimensional space andg(rai − raj ) is the Gaussian normalized probability distribution
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such that
∫

dr g(r) = 1. After linearization over the
∑

i σiδ(x − rαi ) and putting into the
expression for〈Zn〉P the value of the distribution functionP {σ }, we will be led to:

〈Zn〉P ∝
∫

Drαi g(r
α
i − rαi+1) exp

(
− C

∑
α

∫
dx ρ̂3

α(x)− B0

∑
α

∫
dxρ̂2

α(x)

)
×
∫

D9α(x) exp

[
1

2

∑
α<β

∫
dx dy9α(x)9β(y)q̂αβ(x,y)

− 1

2|B|
∑
α

∫
dx dy9α(x)9β(y)δ(x− y)

]
(2.7)

where

ρ̂α(x) =
∑
i

δ(x− rαi )

q̂αβ(x,y) =
∑
ij

Kij δ(x− rαi )δ(x− rβj ).
(2.8)

Thus

〈Zn〉P ∝
∫

DραDqαβ exp[−F(ρα, qαβ)] (2.9)

whereF(ρα, qαβ) = E(ρα, qαβ)−S(ρα, qαβ) is the free-energy functional,E(ρα, qαβ) is the
conformational energy andS(ρα, qαβ) is the entropy ofn polymer chains which correspond
to polymer-chain residue densities{ρα} and two-replica overlap parameters{qαβ}:

−E(ρα, qαβ) = −C
∑
α

∫
x

dx (ρ̂α(x))
3− B0

∑
α

∫
dx (ρ̂2

α(x))+ ln
∫

D9α(x)

× exp

{
1

2

∑
αβ

∫ ∫
xy

dx dy9α(x)9β(y)qαβ(x,y)− 1

2|B|

×
∑
α

∫ ∫
xy

dx dy9α(x)9β(y)δ(x− y)
}

exp[S(ρα, qαβ)]

=
∫

Drαi g(r
α
i+1− rαi )δ(ρα − ρ̂α)δ(qαβ − q̂αβ). (2.10)

In the mean-field approximation we need to minimize the free-energy functionalF(ρα, qαβ)

over the one- and two-replica order parametersρα, qαβ .
The expressions obtained above are identical to those obtained in [4] for the random

sequence without correlations. The main difference is in the two-replica overlap parameter
qαβ definition (see equation (2.7)).

Let us make a Fourier transformation of the order parameter of the system:

qαβ(r) = V −1
∑
k 6=0

qαβ(k) exp(ikr) (2.11)

whereV indicates the volume used by the macromolecule. This transformation will lead
us to a new expression for conformational energy:

−E(q) = ln
∫

D9α(k) exp

{
− V

2

∑
αβ

∑
k 6=0

9α(k)9β(−k)
[
δαβ

|B| − qαβ(k)
]}
. (2.12)
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Using Gaussian properties this integral expression for conformational energy can be rewritten
as:

−E(q) = const− 1

2

∑
k 6=0

ln detPαβ(k)

Pαβ(k) = δαβ

|B| − qαβ(k).
(2.13)

The microscopic order parameter of the system can be displayed in the following form:

q̂αβ(x− y) = Q̂αβ(x− y)+
∑
i 6=j

Kij δ(x− rαi )δ(y − rβj ) (2.14)

whereQ̂αβ(x− y) is a two-replica overlap parameter used in papers dedicated to random
heteropolymers with non-correlated sequences [3, 4]:

Q̂αβ(x− y) =
∑
i

δ(x− rαi )δ(y − rβi ). (2.15)

From the normalization condition∫
Q̂αβ(x− y) dx = ρα (2.16)

the order parameter̂Qαβ(x−y) was found using the method of Shakhnovich and Gutin [3]

Q̂αβ(x− y) = ρ

Rd
ϕαβ

(
x− y
R

)
(2.17)

whereR is the characteristic scale of the two-replica overlap and∫
dz ϕαβ(z) = 1. (2.18)

The order parameter of the systemqαβ , obviously satisfies to normalization conditions
as follows: ∫

dy qαβ(x,y) = K̄ρα(x)

K̄ ≡
∑
j

Kij .
(2.19)

Because the thermal average of quantityδ(x− rαi )δ(y − rβj ) may be interpreted as a prior
probability of corresponding localization of theα replica ith residue and theβ replicaj th
residue(Prob= Pαβjj (x, y)), the order parameterqαβ(k) required may be found in the form

qαβ(k) = (Kρ/Rd)ϕαβ
(
x− y
R

)
+
∑
i 6=j

KijP
αβ

ij (x,y). (2.20)

Taking into account the system translation invariance probability distributionP
αβ

ij (x,y) we
find

P
αβ

ij (x, y) = constantPαβij (y|x) (2.21)

wherePαβij (y|x) = Prob{β replicaj th residue situated in pointy, if the α replicaith residue
situated in pointx} is the conditional probability distribution.
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It is known [15] that the polymer chain behaviour in the globular state is described
by Gaussian statistics. Accordingly, by analogy with [3, 4] and taking into account the
normalization condition (2.19), we will use the following equation forqαβ :

qαβ(x− y) = KQαβ(x− y)+
∑
i 6=j

KijP
αβ

ij (x− y)

P
αβ

ij (x− y) =
∫

dz P (z − x, |j − i|) ρ

NRd
ϕαβ

(
z − y
R

) (2.22)

where

P(x− z, |j − i|) ∝ (a2|j − i|)−d/2 exp

(
− (x− z)

2

a2|j − i|
)
. (2.23)

HereP(r, |j − i|) is the probability distribution of the end-to-end vectorr for the Gaussian
polymer chain. After simplifying in the limitN →∞ we will come to a new equation for
Fourier transformation of the order parameter:

q̃αβ(k) = ρ

ad
ϕ̃αβ(kR)

1

N

∑
i

∑
j 6=i

K(|j − i|) exp{−a2k2|j − i|}

∼= Kρϕ̃αβ(kR)+ 2ρ
∑
l>1

(l) exp(−a2k2l)ϕ̃αβ(kR) ≡ ρϕ̃αβ(kR)A(k) (2.24)

wherek = |k|. It is obvious that without correlations in the polymer-chain sequence our
results reduce to those obtained recently in [4].

Using the results of [16, 4] leads us to the following form of conformational energy, in
limit n→ 0:

E

n
∼= −1

2

∑
k

∫ 1

0

dx

x2
ln λk(x) (2.25)

where

λk(x) = 1/|B| − ρA(k)−
∫ 1

x

dy Mk(y)− xMk(x) (2.26)

and the Parisi functionMk(x) parametrizing the off-diagonal elements of the hierarchical
matrix Pαβ(k) in the n→ 0 limit.

Now we have to minimize the free-energy functional (see equations (2.8) and (2.9)). It
is known [3, 4], that the replica-symmetric solution is invalid for random heteropolymers,
because in this case the entropy contribution has the form [3]:

S{ρα, qαβ} = (n− 1)1S(R) (2.27)

where1S(R) is the loss of entropy of the ideal polymer chain constrained in a tube of
diameterR; here

1S(R) ∼=
{
−Na2/R2(R � a)

Nd ln (R/a) (R � a)
. (2.28)

Following the Parisi ansatz for one-step replica symmetry breaking (RSB), forn replicas
there aren/x groups withx replicas per group. The entropy loss is therefore:

S{ρα, qαβ} = n

x
(x − 1)1S(R). (2.29)

In the same one-step RSB the energy contribution (forn→ 0) becomes

E = E{qαβ}
n
∼= T

2

∫
dk

Rd

{
1

x
ln[b − xρA(k/R)(1− ϕ̃(k))] +

(
1− 1

x

)
ln[b]

}
(2.30)
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whereb − 1/|B|.
For the subsequent minimization consider the functionA(k) behaviour (see

equation (2.23)) defined above

A

(
k

R

)
= K + 2

∑
l>1

K(l) exp

(
− l a

2k2

R2

)
. (2.31)

For the correlation function (2.4) theA(k/R) can be evaluated as

A

(
k

R

)
∼= K

{
1+ 20(β)

(
ak

R

)−2β
}

for
ak

R
� 1. (2.32)

Consequently, the functionA(k/R) is increased monotonically withR/k and thus for
anyk value we can find theR scale such that the energy contribution in equation (2.30) will
diverge as ln(b−constant(R/a)2β). From the form of equations (2.30) we can see that there
is a wide-scaleR region, which is forbidden energetically, as the dependenceE versusR
has the form shown by figure 1(a). The entropy loss1S(R) due by restrictions with scale
R has the form shown by figure 1(b). It is obvious that, for the small enough values ofR-
scale, we have a situation identical with that of [3, 4] (for the random heteropolymer (RHP)
with a non-correlated sequence). Consequently, free energy for the one-step RSB has one
maximal value at theR ≈ 0 (see figure 1(c)) and, correspondingly, one thermodynamically
stable state. Moreover, the free energy for the one-step RSB has the infinite energy barrier
due to divergence (see above), which separates the stable state withR ≈ 0 from the
other (unfrozen) states. In the case of the two-step RSB we carried out the calculations
analogous to equation (2.30). For this scheme the conformational energy also diverges at
large enough replica overlap scales. Thus, the above results are not due to the one-step
RSB approximation; however, they reflect the system properties examined here.

(a) (b) (c)

Figure 1. (a) The conformational energy dependence versus the scale of replicas overlap(R).
Here ν is the excluded volume of chain residue andR0 is the scale of conformational energy
divergence. (b) The conformational entropy plotted versus the scale of replicas overlap(R).
Here ν is the excluded volume of the chain residue andR0 is the scale of the conformational
energy divergence. (c) The full curve is the free-energy dependence versus the scale of replicas
overlap (R). The broken curve free-energy plotted versus scaleR for the RHP with a non-
correlated sequence of residues (see, e.g. [3, 4]).
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3. Discussion

As well as other investigated peculiarities, there appear to be long-range correlations of
residue sequences in the heteropolymer chain folding. The interresidual correlations are
defined by the Gaussian distribution function (2.2) with a non-diagonal correlation matrix
(2.3). The probability distribution does not factor on the terms corresponding to the chain
residues which are different from the non-correlated sequence case. In this paper the standard
techniques, developed in [3] were used. The results obtained above are mathematically
similar to those in [4], but the two-replica order parameter redefinition led to unexpected
physical properties in the system under examination.

In the case of the power-law correlations decay (see equation (2.4)), the off-diagonal
terms which have contributions in the order parameterqαβ (see equation (2.8)) led to
the qualitatively different behaviour of the energetical term (2.30). Taking into account
estimation (2.33) we can see that each harmonick energetic contribution characterized by
some space scaleR of divergence, is defined by the expression

b − xρA
(
k

R

)
(1− ϕ̃(k)) = 0. (3.1)

At the large enough values ofR the last expression may be rewritten as

b ∼= 2ρx(1− ϕ̃(k))0(β)
(
R

ak

)2β

. (3.2)

Expressions (2.17) and (2.18) show that the characteristic scale of theϕ(z) function decay is
|z| ≈ 1 andϕ(z) = ϕ(|z|) has the form schematically represented in figure 2. Consequently,
there existsk∗, such that for anyk > k∗ ϕ̃(k) < 1. So, for example, forϕ(r) ∝ exp(−r2/2)
we haveϕ̃(k) ∝ exp(−k2/2). Thus, fork > k∗ equation (3.5) has the solution, defined by

Figure 2. The overlap function behaviour plotted
versus the dimensionless scale of replicas overlap.

Figure 3. The scheme of different harmonics
contributions for the conformational energy.Rk is the
scale of divergence for the wavevector lengthk (see
equation (3.3)).
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the expression

R ∼= ak
(

b

2ρx(1− ϕ̃(k))
)1

2β

(3.3)

and the system energy may be considered as a superposition of different harmonics
contributions, (see figure 3). It is obvious that for large enough values ofR-scale the
system energy becomes divergent. Thus, for the polymer globule the only frozen state
(with R ≈ 0) is stable.

Taking into account the normalization condition forg(r) (see the explanations of
equation (2.6)), the random-coil state-free energy in the polymer globule mean-field theory
[15] evaluated asF = 0. Consequently, our system has two stable states. One,
corresponding to the frozen-chain backbone path and the other a random-coil state. Because
in the large enough values ofR-scale the system energy became divergent these stable states
are separated by an infinite energetic barrier. This result may be interpreted as follows. The
heteropolymer chain with a long-correlated sequence can exist in a foldedR ≈ 0 or random-
coil state, but the folded state is kinetically not available. Thus, the power-law correlations
led to the random heteropolymer folding impossibility.

It is of interest that the correlations exponential decay

K(l) ∝ exp(−l/ξ) (3.4)

in the limit ξ � 1 is equivalent toβ = 1 in (2.4), which is the marginal case of maximal
long-range correlations in the sequence

q̃αβ(k) = ρϕ̃αβ(kR)
{

1+ 2
∑
l>1

exp[−l(a2k2+ 1/ξ)]

}
∼= ρϕ̃αβ(kR)

{
1+ 2

∑
l>1

exp(−a2k2l)

}
. (3.5)

If we haveξ ≈ 1, then

q̃αβ(k) ∼= ρϕ̃αβ(kR)
{

1+ 2
∑
l>1

exp(−l/ξ)
}

(3.6)

which is completely equivalent to the order parameter obtained in [4] for the heteropolymer
with a non-correlated sequence. It is quite natural because, in the case ofξ ≈ 1, the chain
sequence may be divided into enough small pieces that will be statistically independent.

The above results are in agreement only with the hypothesis of long-range correlations
in non-coding DNA sequences [8]. Recently, Shakhnovich and Gutin [7] found that for RHP
to have the energetically stable folded state it is sufficient that the sequence of monomers
forms an uncorrelated random sequence. Our results show that the lack of long-range
correlation sequences is a necessary condition for RHP folding possibility.
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